2,408 research outputs found

    Ecological knowledge, leadership, and the evolution of menopause in killer whales

    Get PDF
    This is the final version of the article. Available from Elsevier via the DOI in this record.There is another record in ORE for this publication: http://hdl.handle.net/10871/16488Classic life-history theory predicts that menopause should not occur because there should be no selection for survival after the cessation of reproduction [1]. Yet, human females routinely live 30 years after they have stopped reproducing [2]. Only two other species-killer whales (Orcinus orca) and short-finned pilot whales (Globicephala macrorhynchus) [3, 4]-have comparable postreproductive lifespans. In theory, menopause can evolve via inclusive fitness benefits [5, 6], but the mechanisms by which postreproductive females help their kin remain enigmatic. One hypothesis is that postreproductive females act as repositories of ecological knowledge and thereby buffer kin against environmental hardships [7, 8]. We provide the first test of this hypothesis using a unique long-term dataset on wild resident killer whales. We show three key results. First, postreproductively aged females lead groups during collective movement in salmon foraging grounds. Second, leadership by postreproductively aged females is especially prominent in difficult years when salmon abundance is low. This finding is critical because salmon abundance drives both mortality and reproductive success in resident killer whales [9, 10]. Third, females are more likely to lead their sons than they are to lead their daughters, supporting predictions of recent models [5] of the evolution of menopause based on kinship dynamics. Our results show that postreproductive females may boost the fitness of kin through the transfer of ecological knowledge. The value gained from the wisdom of elders can help explain why female resident killer whales and humans continue to live long after they have stopped reproducing.This research was funded by a Natural Environment Research Council grant (NE/K01286X/1) to D.P.C., D.W.F., and M.A.C

    A DFN Approach to Evaluating the Hydrogeological Significance of Lithostatic Unloading in Fractured Strata Around Open-Pit Workings

    Get PDF
    The majority of open-pit mineral workings are established in hydrogeological environments in which unsaturated drainage or saturated groundwater flow occurs predominantly via discrete fracture networks. Stress relaxation resulting from open-pit mineral extraction can lead to a change in host rock fracture network configuration and fracture hydraulic properties, with the potential to change local hydrogeological characteristics and groundwater flow regimes. Research being undertaken at the University of Leeds is applying a DFN approach to investigate the hydrogeological significance of such effects in relation to methodologies for impact assessment at mineral sites. The paper presents a summary of the research approach and preliminary results. A discrete finite element approach to geomechanical modelling has been undertaken with simulation of DFN evolution in response to lithostatic unloading for a range of pre-existing discontinuity configurations, lithological types and variations in in-situ stress regimes. Preliminary modelling results have provided improved understanding of the vertical and lateral extent of potential DFN response for a range of excavation profiles. Research results will be used to define conditions under which open-pit mineral extraction could lead to hydrogeologically significant change in fracture flow drainage characteristics at a scale relevant to hydrogeological impact assessment for new and existing mineral workings

    Meta-heuristically seeded genetic algorithm for independent job scheduling in grid computing

    Get PDF
    Grid computing is an infrastructure which connects geographically distributed computers owned by various organizations allowing their resources, such as computational power and storage capabilities, to be shared, selected, and aggregated. Job scheduling problem is one of the most difficult tasks in grid computing systems. To solve this problem efficiently, new methods are required. In this paper, a seeded genetic algorithm is proposed which uses a meta-heuristic algorithm to generate its initial population. To evaluate the performance of the proposed method in terms of minimizing the makespan, the Expected Time to Compute (ETC) simulation model is used to carry out a number of experiments. The results show that the proposed algorithm performs better than other selected techniques

    Short-Term Evaluation of Cellular Fate in an Ovine Bone Formation Model.

    Get PDF
    The ovine critical-sized defect model provides a robust preclinical model for testing tissue-engineered constructs for use in the treatment of non-union bone fractures and severe trauma. A critical question in cell-based therapies is understanding the optimal therapeutic cell dose. Key to defining the dose and ensuring successful outcomes is understanding the fate of implanted cells, e.g., viability, bio-distribution and exogenous infiltration post-implantation. This study evaluates such parameters in an ovine critical-sized defect model 2 and 7 days post-implantation. The fate of cell dose and behaviour post-implantation when combined with nanomedicine approaches for multi-model tracking and remote control using external magnetic fields is also addressed. Autologous STRO-4 selected mesenchymal stromal cells (MSCs) were labelled with a fluorescent lipophilic dye (CM-Dil), functionalised magnetic nanoparticles (MNPs) and delivered to the site within a naturally derived bone extracellular matrix (ECM) gel. Encapsulated cells were implanted within a critical-sized defect in an ovine medial femoral condyle and exposed to dynamic gradients of external magnetic fields for 1 h per day. Sheep were sacrificed at 2 and 7 days post-initial surgery where ECM was harvested. STRO-4-positive (STRO-4+) stromal cells expressed osteocalcin and survived within the harvested gels at day 2 and day 7 with a 50% loss at day 2 and a further 45% loss at 7 days. CD45-positive leucocytes were also observed in addition to endogenous stromal cells. No elevation in serum C-reactive protein (CRP) or non-haem iron levels was observed following implantation in groups containing MNPs with or without magnetic field gradients. The current study demonstrates how numbers of therapeutic cells reduce substantially after implantation in the repair site. Cell death is accompanied by enhanced leucocyte invasion, but not by inflammatory blood marker levels. Crucially, a proportion of implanted STRO-4+ stromal cells expressed osteocalcin, which is indicative of osteogenic differentiation. Furthermore, MNP labelling did not alter cell number or result in a further deleterious impact on stromal cells following implantation

    Effects of Supersymmetric Threshold Corrections on High-Scale Flavor Textures

    Get PDF
    Integration of superpartners out of the spectrum induces potentially large contributions to Yukawa couplings. These corrections, the supersymmetric threshold corrections, therefore influence the CKM matrix prediction in a non-trivial way. We study effects of threshold corrections on high-scale flavor structures specified at the gauge coupling unification scale in supersymmetry. In our analysis, we first consider high-scale Yukawa textures which qualify phenomenologically viable at tree level, and find that they get completely disqualified after incorporating the threshold corrections. Next, we consider Yukawa couplings, such as those with five texture zeroes, which are incapable of explaining flavor-changing proceses. Incorporation of threshold corrections, however, makes them phenomenologically viable textures. Therefore, supersymmetric threshold corrections are found to leave observable impact on Yukawa couplings of quarks, and any confrontation of high-scale textures with experiments at the weak scale must take into account such corrections.Comment: 25 pages, submitted to JHE

    Lack of Evidence for an Association between Iridovirus and Colony Collapse Disorder

    Get PDF
    Colony collapse disorder (CCD) is characterized by the unexplained losses of large numbers of adult worker bees (Apis mellifera) from apparently healthy colonies. Although infections, toxins, and other stressors have been associated with the onset of CCD, the pathogenesis of this disorder remains obscure. Recently, a proteomics study implicated a double-stranded DNA virus, invertebrate iridescent virus (Family Iridoviridae) along with a microsporidium (Nosema sp.) as the cause of CCD. We tested the validity of this relationship using two independent methods: (i) we surveyed healthy and CCD colonies from the United States and Israel for the presence of members of the Iridovirus genus and (ii) we reanalyzed metagenomics data previously generated from RNA pools of CCD colonies for the presence of Iridovirus-like sequences. Neither analysis revealed any evidence to suggest the presence of an Iridovirus in healthy or CCD colonies

    Large CP Violation in B_s Meson Mixing with EDM constraint in Supersymmetry

    Full text link
    Motivated by the recent measurement of the like-sign dimuon charge asymmetry, we investigate anomalous CP violation in the B_s- bar{B}_s mixing within the supersymmetry. We show that when gluino diagrams dominate supersymmetry contributions, it is very difficult to realize a large B_s- bar{B}_s mixing phase under the constraint from electric dipole moments barring cancellations. This constraint can be ameliorated by supposing superparticles decoupled. In this limit, we find that it is possible to achieve the large CP asymmetry, and the branching ratio of B_s -> mu^+ mu^- tends to become sizable.Comment: 20 pages, 5 figure

    The Effect of Using an Inappropriate Protein Database for Proteomic Data Analysis

    Get PDF
    A recent study by Bromenshenk et al., published in PLoS One (2010), used proteomic analysis to identify peptides purportedly of Iridovirus and Nosema origin; however the validity of this finding is controversial. We show here through re-analysis of a subset of this data that many of the spectra identified by Bromenshenk et al. as deriving from Iridovirus and Nosema proteins are actually products from Apis mellifera honey bee proteins. We find no reliable evidence that proteins from Iridovirus and Nosema are present in the samples that were re-analyzed. This article is also intended as a learning exercise for illustrating some of the potential pitfalls of analysis of mass spectrometry proteomic data and to encourage authors to observe MS/MS data reporting guidelines that would facilitate recognition of analysis problems during the review process
    corecore